Binder

Scenario analysis

We will perform scenario analysis. Regarding phase-dependent SIR-derived ODE models, this analysis focused on the impact of changes of ODE parameter values on the number of cases.

[1]:
from datetime import timedelta
import pandas as pd
import covsirphy as cs
cs.__version__
[1]:
'3.1.2'

1. Create analyzer

An instance of ODEScenario() will be created here. We have two options as follows.

  • With dataset of recommended servers

  • With pandas.DataFrame

  • With serialized ODEScenario object (JSON file, from version 2.28.0)

1.2 With pandas.DataFrame

The following solution is useful when we want to use pandas.DataFrame or sample data for scenario analysis.

At first, we will prepare an instance of Dynamics.

[6]:
dyn_sample = cs.Dynamics.from_sample(cs.SIRFModel, date_range=("01Jan2022", "31Jan2022"), tau=1440)
sample_df = dyn_sample.simulate()
cs.line_plot(sample_df.drop("Susceptible", axis=1), "Sample: Simulated data (Baseline scenario)")
_images/05_scenario_analysis_14_0.png

Then, prepare a pandas.DataFrame with time-index and Population/Confirmed/Recovered/Fatal columns. DataEngineer class will be useful.

[7]:
eng = cs.DataEngineer(layers=["Country"])
df = sample_df.reset_index()
df.insert(0, "Country", "Sample")
eng.register(data=df)
eng.inverse_transform()
subset_df, *_ = eng.subset(
    geo="Sample", variables=["Population", "Confirmed", "Recovered", "Fatal"]
)
display(subset_df.head())
display(subset_df.tail())
Population Confirmed Recovered Fatal
Date
2022-01-01 1000000.0 1000 0 0
2022-01-02 1000001.0 1213 80 6
2022-01-03 1000000.0 1451 169 12
2022-01-04 999999.0 1720 271 19
2022-01-05 1000001.0 2025 385 28
Population Confirmed Recovered Fatal
Date
2022-01-27 1000000.0 35218 13068 940
2022-01-28 1000001.0 39544 14753 1061
2022-01-29 1000000.0 44357 16637 1196
2022-01-30 1000000.0 49704 18741 1347
2022-01-31 999999.0 55633 21088 1515

Finally, we can create an instance of ODEScenario.

[8]:
snr = cs.ODEScenario(data=subset_df, location_name="Sample", complement=False)
snr.build_with_dynamics(name="Baseline", dynamics=dyn_sample)
# Show summary
snr.summary()
[8]:
Start End Rt theta kappa rho sigma alpha1 [-] 1/alpha2 [day] 1/beta [day] 1/gamma [day] ODE tau
Scenario Phase
Baseline 0th 2022-01-01 2022-01-31 2.5 0.002 0.005 0.2 0.075 0.002 200 5 13 SIR-F Model 1440

If we need to perform time-series segmentation, tau estimation and ODE parameter estimation, we can use .build_with_model(name=<str>, model=<ODEModel>, data_range=<tuple of (str, str) or None>, tau=<int or None> instead of .build_with_dynamics().

1.3 With serialized ODEScenario object

From version 2.28.0, we can save scenario settings as JSON file using ODEScenario.to_json(filename). The JSON file will be used to re-create ODEScenario object, skipping ODE parameter estimation step and so on.

To JSON file:

[9]:
# Create {"filename": <absolute path>} easily
filer = cs.Filer(directory="input", prefix="jpn")
file_dict = filer.json(title="scenarios")
# To JSON file
json_file = snr.to_json(**file_dict)

From JSON file:

[10]:
snr_recreated = cs.ODEScenario.from_json(json_file)
# Describe (explained later)
snr_recreated.describe()
[10]:
max(Infected) argmax(Infected) Confirmed on 31Jan2022 Infected on 31Jan2022 Fatal on 31Jan2022
Baseline 33030.0 2022-01-31 55633.0 33030.0 1515.0

Set additional scenarios

We will define the following scenario as an example to analyze the impact of ODE parameter changes, copying the baseline scenario and add a phase with the changed ODE parameter values. Note that this is just an assumption. It will be better to change ODE parameter values for your analysis.

name

01Jan - 31Jan

\(\kappa\) (to 30Jun)

\(\rho\) (to 30Jun)

\(\sigma\) (to 30Jun)

Baseline

100%

100%

100%

100%

Lockdown

100%

100%

50%

100%

Medicine

100%

50%

100%

200%

Vaccine

100%

60%

80%

120%

Get the baseline values of ODE parameters.

[11]:
df = snr.summary()
kappa, rho, sigma = df.loc[("Baseline", "0th"), ["kappa", "rho", "sigma"]]
print(f"kappa={kappa:.4}, rho={rho:.4}, sigma={sigma:.4}")
kappa=0.005, rho=0.2, sigma=0.075

2.1 Lockdown scenario

This scenario assumes that \(\rho\) value will be decreased from 01Feb2022 because of stay-home restriction.

[12]:
name = "Lockdown"
snr.build_with_template(name=name, template="Baseline")
snr.append(name=name, end="30Jun2022", rho=rho*0.5)
# Simulation
snr.simulate(name=name, v="01Feb2022");
2024-10-03 at 13:23:13 | ERROR | validation of end failed
_images/05_scenario_analysis_29_1.png

2.2 Medicine scenario

This scenario assumes that \(\kappa\) will be decreased and \(\sigma\) will be increased because of new medicine development.

[13]:
name = "Medicine"
snr.build_with_template(name=name, template="Baseline")
snr.append(name=name, end="30Jun2022", kappa=kappa*0.5, sigma=sigma*2)
# Simulation
snr.simulate(name=name, v="01Feb2022");
2024-10-03 at 13:23:14 | ERROR | validation of end failed
_images/05_scenario_analysis_31_1.png

2.3 Vaccine scenario

This scenario assumes that \(\kappa\) and \(\rho\) will be decreased and \(\sigma\) will be increased because of vaccination.

[14]:
name = "Vaccine"
snr.build_with_template(name=name, template="Baseline")
snr.append(name=name, end="30Jun2022", kappa=kappa*0.6, rho=rho*0.8, sigma=sigma*1.2)
# Simulation
snr.simulate(name=name, v="01Feb2022");
2024-10-03 at 13:23:14 | ERROR | validation of end failed
_images/05_scenario_analysis_33_1.png

2.4 Adjustment of the last dates

The last dates of the new scenarios are 30Jun2022, but the baseline scenario ends on 31Jan2022. We need to extend the last phase to the baseline scenario analysis with ODEScenario().append(name="Baseline") or ODEScenario().append() (useful when we have some unchanged scenarios).

Before appended:

[15]:
snr.summary().style.applymap(lambda x: "background-color: yellow", subset=pd.IndexSlice[("Baseline", "0th"), "End"])
[15]:
    Start End Rt theta kappa rho sigma alpha1 [-] 1/alpha2 [day] 1/beta [day] 1/gamma [day] ODE tau
Scenario Phase                          
Baseline 0th 2022-01-01 00:00:00 2022-01-31 00:00:00 2.500000 0.002000 0.005000 0.200000 0.075000 0.002000 200 5 13 SIR-F Model 1440
Lockdown 0th 2022-01-01 00:00:00 2022-01-31 00:00:00 2.500000 0.002000 0.005000 0.200000 0.075000 0.002000 200 5 13 SIR-F Model 1440
1st 2022-02-01 00:00:00 2022-06-30 00:00:00 1.250000 0.002000 0.005000 0.100000 0.075000 0.002000 200 10 13 SIR-F Model 1440
Medicine 0th 2022-01-01 00:00:00 2022-01-31 00:00:00 2.500000 0.002000 0.005000 0.200000 0.075000 0.002000 200 5 13 SIR-F Model 1440
1st 2022-02-01 00:00:00 2022-06-30 00:00:00 1.310000 0.002000 0.002500 0.200000 0.150000 0.002000 400 5 7 SIR-F Model 1440
Vaccine 0th 2022-01-01 00:00:00 2022-01-31 00:00:00 2.500000 0.002000 0.005000 0.200000 0.075000 0.002000 200 5 13 SIR-F Model 1440
1st 2022-02-01 00:00:00 2022-06-30 00:00:00 1.720000 0.002000 0.003000 0.160000 0.090000 0.002000 333 6 11 SIR-F Model 1440

Append:

[16]:
snr.append().summary().style.applymap(lambda x: "background-color: yellow", subset=pd.IndexSlice[("Baseline", "0th"), "End"])
2024-10-03 at 13:23:15 | ERROR | validation of end failed
2024-10-03 at 13:23:15 | ERROR | validation of end failed
2024-10-03 at 13:23:15 | ERROR | validation of end failed
2024-10-03 at 13:23:15 | ERROR | validation of end failed
[16]:
    Start End Rt theta kappa rho sigma alpha1 [-] 1/alpha2 [day] 1/beta [day] 1/gamma [day] ODE tau
Scenario Phase                          
Baseline 0th 2022-01-01 00:00:00 2022-06-30 00:00:00 2.500000 0.002000 0.005000 0.200000 0.075000 0.002000 200 5 13 SIR-F Model 1440
Lockdown 0th 2022-01-01 00:00:00 2022-01-31 00:00:00 2.500000 0.002000 0.005000 0.200000 0.075000 0.002000 200 5 13 SIR-F Model 1440
1st 2022-02-01 00:00:00 2022-06-30 00:00:00 1.250000 0.002000 0.005000 0.100000 0.075000 0.002000 200 10 13 SIR-F Model 1440
Medicine 0th 2022-01-01 00:00:00 2022-01-31 00:00:00 2.500000 0.002000 0.005000 0.200000 0.075000 0.002000 200 5 13 SIR-F Model 1440
1st 2022-02-01 00:00:00 2022-06-30 00:00:00 1.310000 0.002000 0.002500 0.200000 0.150000 0.002000 400 5 7 SIR-F Model 1440
Vaccine 0th 2022-01-01 00:00:00 2022-01-31 00:00:00 2.500000 0.002000 0.005000 0.200000 0.075000 0.002000 200 5 13 SIR-F Model 1440
1st 2022-02-01 00:00:00 2022-06-30 00:00:00 1.720000 0.002000 0.003000 0.160000 0.090000 0.002000 333 6 11 SIR-F Model 1440

If we need all values for dates, we can use ODEScenario().track() method.

[17]:
snr.track()
[17]:
Scenario Phase Rt theta kappa rho sigma alpha1 [-] 1/alpha2 [day] 1/beta [day] 1/gamma [day] ODE tau
Date
2022-01-01 Baseline 0th 2.5 0.002 0.005 0.2 0.075 0.002 200 5 13 SIR-F Model 1440
2022-01-02 Baseline 0th 2.5 0.002 0.005 0.2 0.075 0.002 200 5 13 SIR-F Model 1440
2022-01-03 Baseline 0th 2.5 0.002 0.005 0.2 0.075 0.002 200 5 13 SIR-F Model 1440
2022-01-04 Baseline 0th 2.5 0.002 0.005 0.2 0.075 0.002 200 5 13 SIR-F Model 1440
2022-01-05 Baseline 0th 2.5 0.002 0.005 0.2 0.075 0.002 200 5 13 SIR-F Model 1440
... ... ... ... ... ... ... ... ... ... ... ... ... ...
2022-06-26 Vaccine 1st 1.72 0.002 0.003 0.16 0.09 0.002 333 6 11 SIR-F Model 1440
2022-06-27 Vaccine 1st 1.72 0.002 0.003 0.16 0.09 0.002 333 6 11 SIR-F Model 1440
2022-06-28 Vaccine 1st 1.72 0.002 0.003 0.16 0.09 0.002 333 6 11 SIR-F Model 1440
2022-06-29 Vaccine 1st 1.72 0.002 0.003 0.16 0.09 0.002 333 6 11 SIR-F Model 1440
2022-06-30 Vaccine 1st 1.72 0.002 0.003 0.16 0.09 0.002 333 6 11 SIR-F Model 1440

724 rows × 13 columns

3. Compare and evaluate scenarios

3.1 Compare the params

We will confirm the ODE parameter values and reproduction number with ODEScenario().compare_param(param) method.

Reproduction number:

[18]:
snr.compare_param("Rt");
_images/05_scenario_analysis_44_0.png

ODE parameter values:

[19]:
snr.compare_param("kappa");
_images/05_scenario_analysis_46_0.png
[20]:
snr.compare_param("rho");
_images/05_scenario_analysis_47_0.png
[21]:
snr.compare_param("sigma");
_images/05_scenario_analysis_48_0.png

3.2 Compare simulated number of cases

We will compare simulated number of cases with ODEScenario().compare_cases(variable, date_range=<None or tuple of dates>) method.

[22]:
snr.compare_cases("Confirmed");
_images/05_scenario_analysis_50_0.png
[23]:
snr.compare_cases("Fatal");
_images/05_scenario_analysis_51_0.png
[24]:
snr.compare_cases("Recovered");
_images/05_scenario_analysis_52_0.png

3.3 Describe representative values

We can use ODEScenario.describe() to describe representative values of simulated number of cases. Max value of Infected and the number of cases on the last date will be shown as a pandas.DataFrame. This is useful to confirm the impact of OE parameter changes.

[25]:
snr.describe()
[25]:
max(Infected) argmax(Infected) Confirmed on 30Jun2022 Infected on 30Jun2022 Fatal on 30Jun2022
Baseline 232733.0 2022-03-03 887821.0 574.0 57116.0
Lockdown 47075.0 2022-03-09 421595.0 9267.0 26559.0
Medicine 53834.0 2022-02-22 490556.0 284.0 10166.0
Vaccine 114876.0 2022-03-10 709162.0 1720.0 24956.0

3.4 Get representative scenario

Which scenario is the best/worst scenario? Specifying quantile, variable name and date, we can confirm that with ODEScenario().represent(q=<float or tuple of float>, variable=<str>, date=<str or None>, included=<list of str or None>, excluded=<list of str or None>). date=None means the last date of scenarios.

[26]:
scenarios = snr.represent(q=(0.1, 0.9), variable="Confirmed", excluded=["Baseline"])
print(f" the best: {scenarios[0]} (small number of confirmed cases)\nthe worst: {scenarios[1]} (large number of confirmed cases)")
 the best: Lockdown (small number of confirmed cases)
the worst: Vaccine (large number of confirmed cases)

We can rename a scenario with ODEScenario().rename(old, new).

[27]:
snr.rename(old=scenarios[0], new="Best")
snr.rename(old=scenarios[1], new="Worst").describe()
[27]:
max(Infected) argmax(Infected) Confirmed on 30Jun2022 Infected on 30Jun2022 Fatal on 30Jun2022
Baseline 232733.0 2022-03-03 887821.0 574.0 57116.0
Medicine 53834.0 2022-02-22 490556.0 284.0 10166.0
Best 47075.0 2022-03-09 421595.0 9267.0 26559.0
Worst 114876.0 2022-03-10 709162.0 1720.0 24956.0

We can delete a scenario with ODEScenario().delete(pattern, exact=True). Just for demonstration, we will delete the scenario which is not the baseline/best/worst scenario.

[28]:
deleted_scenarios = [name for name in snr.describe().index.unique() if name not in [*scenarios, "Best", "Worst", "Baseline"]]
deleted_scenarios
[28]:
['Medicine']
[29]:
for name in deleted_scenarios:
    snr.delete(name, exact=True)
snr.describe()
[29]:
max(Infected) argmax(Infected) Confirmed on 30Jun2022 Infected on 30Jun2022 Fatal on 30Jun2022
Baseline 232733.0 2022-03-03 887821.0 574.0 57116.0
Best 47075.0 2022-03-09 421595.0 9267.0 26559.0
Worst 114876.0 2022-03-10 709162.0 1720.0 24956.0

We can delete scenarios with regular expressions with ODEScenario().delete(pattern, exact=True). Just for demonstration, we will add scenarios which names start with “Deleted_”. Then, delete them.

[30]:
snr.build_with_template(name="Deleted_1", template="Baseline")
snr.build_with_template(name="Deleted_2", template="Baseline").describe()
[30]:
max(Infected) argmax(Infected) Confirmed on 30Jun2022 Infected on 30Jun2022 Fatal on 30Jun2022
Baseline 232733.0 2022-03-03 887821.0 574.0 57116.0
Best 47075.0 2022-03-09 421595.0 9267.0 26559.0
Worst 114876.0 2022-03-10 709162.0 1720.0 24956.0
Deleted_1 232733.0 2022-03-03 887821.0 574.0 57116.0
Deleted_2 232733.0 2022-03-03 887821.0 574.0 57116.0
[31]:
snr.delete("Deleted_", exact=False).describe()
[31]:
max(Infected) argmax(Infected) Confirmed on 30Jun2022 Infected on 30Jun2022 Fatal on 30Jun2022
Baseline 232733.0 2022-03-03 887821.0 574.0 57116.0
Best 47075.0 2022-03-09 421595.0 9267.0 26559.0
Worst 114876.0 2022-03-10 709162.0 1720.0 24956.0

As explained, we can compare the scenarios with the methods, ODEScenario().compare_cases() as an example.

[32]:
snr.compare_cases("Confirmed");
_images/05_scenario_analysis_66_0.png

Thank you!